Archimedean Spiral Pairs with no Electrical Connections as a Passive Wireless Implantable Sensor
نویسندگان
چکیده
We have developed, modeled, fabricated, and tested a passive wireless sensor system that exhibits a linear frequency-displacement relationship. The displacement sensor is comprised of two anti-aligned Archimedean coils separated by an insulating dielectric layer. There are no electrical connections between the two coils and there are no onboard electronics. The two coils are inductively and capacitively coupled due to their close proximity. The sensor system is interrogated wirelessly by monitoring the return loss parameter from a vector network analyzer. The resonant frequency of the sensor is dependent on the displacement between the two coils. Due to changes in the inductive and capacitive coupling between the coils at different distances, the resonant frequency is modulated by coil separation. In a specified range, the frequency shift can be linearized with respect to coil separation. Batch fabrication techniques were used to fabricate copper coils for experimental testing with air as the dielectric. Through testing, we validated the performance of sensors as predicted within acceptable errors. Because of its simplicity, this displacement sensor has potential applications for in vivo sensing.
منابع مشابه
Elementary Implantable Force Sensor: For Smart Orthopaedic Implants.
Implementing implantable sensors which are robust enough to maintain long term functionality inside the body remains a significant challenge. The ideal implantable sensing system is one which is simple and robust; free from batteries, telemetry, and complex electronics. We have developed an elementary implantable sensor for orthopaedic smart implants. The sensor requires no telemetry and no bat...
متن کاملکاربردهای شبکههای حسگر بدنی در حوزه ی سلامت: مروری بر منابع
Background and Aim: Nowadays, one of the most important areas of application of information technology in the health sector is monitoring patients' condition. Recently utilization of body area sensor networks in healthcare had significant advances. The purpose of this article is to examine the applications of wireless health sensor networks in the field of health. Materials and Methods: This ...
متن کاملOptimizing the Event-based Method of Localization in Wireless Sensor Networks
A Wireless Sensor Network (WSN) is a wireless decentralized structure network consists of many nodes. Nodes can be fixed or mobile. WSN applications typically observe some physical phenomenon through sampling of the environment so determine the location of events is an important issue in WSN. Wireless Localization used to determine the position of nodes. The precise localization in WSNs is a co...
متن کاملImplementation of Identical Spiral Square Inductive Coils for Wireless EV Battery Charging Application
In recent years, the popularity of wireless inductive power transfer (WIPT) system for electric vehicle battery charging (EVBC) is always ever-increasing. In the WIPT inductively coupled coil structure is the heart of the system and the mutual inductance (MI) between the coupled coils is the key factor for effective power transfer. This paper presents the analysis of mutual inductance between t...
متن کاملAn Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach
Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...
متن کامل